8 research outputs found

    Optimization of the position of single-lead wireless sensor with low electrodes separation distance for ECG-derived respiration

    Get PDF
    A classical method for estimation of respiratory information from electrocardiogram (ECG), called ECG - derived respiration (EDR), is using flexible electrodes located at standard electrocardiography positions. This work introduces an alternative approach suitable for miniaturized sensors with low inter-electrode separation and electrodes fixed to the sensor encapsulation. Application of amplitude EDR algorithm on single-lead wireless sensor system with optimized electrode positions shows results comparable with standard robust systems. The modified method can be applied in daily physiological monitoring, in sleep studies or implemented in smart clothes when standard respiration techniques are not suitable

    NOVEL APPROACH IN RATIOMETRIC TECHNIQUE OF SENSING

    Get PDF
    A novel method of ratio and relation measurement is introduced. On the basis of this principle, asymmetric ratio resistance and conductance microsensors have been developed which are set to an arbitrary relation temperature or electrochemical concentration. The combined resistance temperature sensor allows both to adjust its sensitivity to the defined value by trimming the asymmetry resistor resistances and to increase the accuracy 10 times in comparison with the classical ratiometric arrangement. The electrochemical conductance micro-sensor is able to monitor the concentration changes in µmol/L range with constant sensitivity adjustable by the frequency of the supply voltage. K e y w o r d s: ratiometric technique, relation measuring systems, resistance sensors, temperature, electrochemical conductanc

    Advanced Wireless Sensors Used to Monitor the Impact of Environment Design on Human Physiology

    Get PDF
    This article describes modern wireless sensor devices and their application in the measurements of the human physiology. We used our own advanced ECG Holter device and EEG helmet to record the heart and brain activity impacted by different environments, materials, colors or body positions during work. In this paper, we want to show the interactions between humans and architecture design, which modify human work performance and well-being. This paper is a conclusion of the 3 different pilot studies, where different scopes of human-space interaction were explored. In the experiments, we aimed mostly at wood materials and their beneficial effects on the nervous system. The research in its actual state is primarily focused on optimizing the methods of the ECG data analysis from our Holter device and the EEG data from helmet. Based on these data, we will improve the methodology of the experiments for the next enhanced research with aspiration to automate data analysis

    IMPLEMENTATION OF PULSE OXIMETRY MEASUREMENT TO WIRELESS BIOSIGNALS PROBE

    Get PDF
    Monitoring of heart rate variability (HRV) and oxygen saturation is important in medicine as well as training of top athletes. Our work describes the implementation of pulse oximetry functions in sensor system for measurement of biosignals. It allows us to follow along even pulse biosignal and the flow rate of blood

    APPLICATION OF SINGLE WIRELESS HOLTER TO SIMULTANEOUS EMG, MMG AND EIM MEASUREMENT OF HUMAN MUSCLES ACTIVITY

    Get PDF
    This paper describes application and design of wireless holter with innovative functionality, used it in field of human muscle monitoring. In our experiments we monitored EMG (electromyography), MMG (mechanomyography) and EIM (electrical impedance myography) all by single device. It is first time when these all parameters were monitored simultaneously taking advantage of the holter device data output in order to find the signals interconnection. Our data were compared with normally used medical device and signal quality was verified

    Design of sensor systems for long time electrodermal activity monitoring

    No full text
    This article describes successive development of electrodermal activity monitoring sensor system. Our aim is to improve existing systems to be more practical and suitable for long-term monitoring. Therefore, compared to conventional devices, our system must be easily wearable, without limiting the examined person in ordinary life, with low power consumption, battery operated and reducing the impact of negative artefacts. Specifically, we describe here three devices. The first is serving mainly to familiarize with the methodology, extensive testing and optimization of measurement parameters. Based on the obtained result, we constructed second system in form of small ring - "EDA ring". Last sensor system is developed with the effort to integrate the monitoring of electrodermal activity in e-health and smart clothes

    Elektro – optický monitoring citrátu sodného aplikovatelného v hemodialýze

    No full text
    V této práci se popisují naše počáteční experimenty ve vývoji „on-line“ senzoru na monitoring koncentrace citrátu sodného (Na3C6H2O7) v mimo mozkovém proudění krve v průběhu hemodialýzy. Přesný a rychlý monitoring by umožnil regulaci koncentrace citrátu a návrat do krevního řečiště těla v jeho původních hodnotách, tím pacienta významně méně zatíženého než v přítomnosti. Nedávno jsme se soustředili na stanovení koncentrace měřením elektrické impedance a odrazivosti ve zkoumané krvi. Našim cílem je zkoumat trendy vlivu těchto signálů na koncentraci a vyvinout vhodnou metodiku, která může být použita později v senzorech. Částečně začínáme pracovat také na citlivosti metodiky, přičemž bychom rádi výpočtem dosáhli ekvivalentní elektrický model řešení. To je založeno na elektrochemickém dvouvrstvém modelu a korespondenci s Cole-Cole grafyIn this paper, we describe our initial steps in the development of online sensor to monitor the tri-sodium citrate concentration in extra-cerebral blood flow during haemodialysis. Accurate and fast monitoring would allow the regulation of the concentration of citrate returning to the human bloodstream to its original values, thereby, making the patient significantly less burdened than at present. In the early stages, we focused on the determination of concentration by measuring of electrical impedance and reflection in the collected blood. Our aim is to study the trends of influencing these signals by concentration and to develop a suitable methodology that can be used later in the sensor. In part, we begin working on the selectivity of the methodology that we would like to achieve by calculating the equivalent electrical model of the solution. It is based on the electrochemical double layer model and the corresponding Cole-Cole graphs
    corecore